Skip to main content

Astronomers snap first up-close image of a star outside our galaxy

This image shows an artist’s reconstruction of the star WOH G64, the first star outside our galaxy to be imaged in close-up. It is located at a staggering distance of over 160 000 light-years away in the Large Magellanic Cloud. This artistic impression showcases its main features: an egg-shaped cocoon of dust surrounding the star and a ring or torus of dust. The existence and shape of the latter require more observations to be confirmed.
This image shows an artist’s reconstruction of the star WOH G64, the first star outside our galaxy to be imaged in close-up. It is located at a staggering distance of over 160 000 light-years away in the Large Magellanic Cloud. This artistic impression showcases its main features: an egg-shaped cocoon of dust surrounding the star and a ring or torus of dust. The existence and shape of the latter require more observations to be confirmed. ESO/L. Calçada

It’s sometimes hard to grasp the scale of our universe, when even our own galaxy is so large and filled with billions of stars. But all of the stars that we have seen in detail are contained within the roughly 100,000 light-year span of our Milky Way galaxy. That is, until now, as astronomers recently observed a star outside of our galaxy up close for the first time.

The researchers looked at star WOH G64, located 160,000 light-years away, using the European Southern Observatory’s Very Large Telescope Interferometer. The image shows the main bulk of the star surrounded by a puffy cocoon of dust and gas.

This is an image of the star WOH G64, taken by the GRAVITY instrument on the European Southern Observatory’s Very Large Telescope Interferometer (ESO’s VLTI). This is the first close-up picture of a star outside our own galaxy, the Milky Way. The star is located in the Large Magellanic Cloud, over 160 000 light-years away. The bright oval at the centre of this image is a dusty cocoon that enshrouds the star. A fainter elliptical ring around it could be the inner rim of a dusty torus, but more observations are needed to confirm this feature.
This is an image of the star WOH G64, taken by the GRAVITY instrument on the European Southern Observatory’s Very Large Telescope Interferometer. This is the first close-up picture of a star outside our own galaxy, the Milky Way. ESO/K. Ohnaka et al.

“We discovered an egg-shaped cocoon closely surrounding the star,” said lead researcher Keiichi Ohnaka of the Universidad Andrés Bello in Chile in a statement. “We are excited because this may be related to the drastic ejection of material from the dying star before a supernova explosion.”

Recommended Videos

The star is located in one of the satellite galaxies of the Milky Way, called the Large Magellanic Cloud. This satellite galaxy orbits around the Milky Way and is much smaller, at around one-hundredth of the mass of our galaxy. The star itself is a big one, though, coming in at 2,000 times the size of our sun — making it a type called a red supergiant.

The Large Magellanic Cloud is a satellite galaxy to the Milky Way, located 160 000 light-years away from us. Despite the staggering distance, the GRAVITY instrument of the European Southern Observatory’s Very Large Telescope Interferometer (ESO’s VLTI), managed to take a closed-up picture of the giant star WOH G64. This image shows the location of the star within the Large Magellanic Cloud, with with some of the VLTI’s Auxiliary Telescopes in the foreground.
The Large Magellanic Cloud is a satellite galaxy to the Milky Way, located 160 000 light-years away from us. Despite the staggering distance, the GRAVITY instrument of the European Southern Observatory’s Very Large Telescope Interferometer (ESO’s VLTI), managed to take a close-up picture of the giant star WOH G64. This image shows the location of the star within the Large Magellanic Cloud, with some of the VLTI’s Auxiliary Telescopes in the foreground. ESO/K. Ohnaka et al./Y. Beletsky (LCO)

This huge star is undergoing a process of change, in which it is shedding off its outer layers and throwing off dust and gas, creating the cocoon. This material could be what is causing the star to dim, and the fast rate of change suggests it could be set to go supernova soon.

“We have found that the star has been experiencing a significant change in the last 10 years, providing us with a rare opportunity to witness a star’s life in real time,” said fellow researcher Gerd Weigelt of the Max Planck Institute for Radio Astronomy in Germany.

Jacco van Loon of Keele University agreed: “This star is one of the most extreme of its kind, and any drastic change may bring it closer to an explosive end.”

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
Hubble snaps another gorgeous image of the Tarantula Nebula
This NASA/ESA Hubble Space Telescope image features a dusty yet sparkling scene from one of the Milky Way’s satellite galaxies, the Large Magellanic Cloud. The Large Magellanic Cloud is a dwarf galaxy situated about 160,000 light-years away in the constellations Dorado and Mensa.

This gorgeous new image from the Hubble Space Telescope shows a bustling nearby star forming region called the Tarantula Nebula. Given its name due to its complex, web-like internal structure, this nebula is located in a satellite galaxy of the Milky Way called the Large Magellanic Cloud and is often studied by astronomers researching star formation and evolution.

This new image shows the edges of the nebula, further out from its center. In the middle of the nebula are enormous stars that are as much as 200 times the mass of the sun, but here on the outskirts the view is calmer.

Read more
See the majestic Southern Pinwheel Galaxy in this Dark Energy Camera image
Twelve million light-years away lies the galactic masterpiece Messier 83, also known as the Southern Pinwheel Galaxy. Its swirling spiral arms display a high rate of star formation and host six detected supernovae. This image was captured with the Department of Energy-fabricated Dark Energy Camera, mounted on the U.S. National Science Foundation Víctor M. Blanco 4-meter Telescope at Cerro Tololo Inter-American Observatory in Chile, a Program of NSF NOIRLab.

An image from the Dark Energy Camera (DECam) shows a striking celestial sight: the Southern Pinwheel Galaxy, a gorgeous face-on galaxy that is one of the closest and brightest barred spiral galaxies in the sky. Also known as Messier 83, the galaxy is bright enough that it can even be seen with binoculars, but this image from a 4-meter Víctor M. Blanco Telescope shows the kind of stunning detail that can be picked out using a powerful instrument.

"This image shows Messier 83’s well-defined spiral arms, filled with pink clouds of hydrogen gas where new stars are forming," explains NOIRLab from the National Science Foundation, which released the image. "Interspersed amongst these pink regions are bright blue clusters of hot, young stars whose ultraviolet radiation has blown away the surrounding gas. At the galaxy’s core, a yellow central bulge is composed of older stars, and a weak bar connects the spiral arms through the center, funneling gas from the outer regions toward the core. DECam’s high sensitivity captures Messier 83’s extended halo, and myriad more distant galaxies in the background."

Read more
Webb and Hubble snap the same object for two views of one galaxy
Featured in this NASA/ESA/CSA James Webb Space Telescope Picture of the Month is the spiral galaxy NGC 2090, located in the constellation Columba. This combination of data from Webb’s MIRI and NIRCam instruments shows the galaxy’s two winding spiral arms and the swirling gas and dust of its disc in magnificent and unique detail.

With all the excitement over the last few years for the shiny and new James Webb Space Telescope, it's easy to forget about the grand old master of the space telescopes, Hubble. But although Webb is a successor to Hubble in some ways, with newer technology and the ability to see the universe in even greater detail, it isn't a replacement. A pair of new images shows why: with the same galaxy captured by both Webb and Hubble, you can see the different details picked out by each telescope and why having both of them together is such a great boon for scientists.

The galaxy NGC 2090 was imaged by Webb, shown above, using its MIRI and NIRCam instruments. These instruments operate in the mid-infrared and near-infrared portions of the electromagnetic spectrum respectively, which is why the arms of this galaxy appear to be glowing red. These arms are made of swirling gas and dust, and within them are compounds called polycyclic aromatic hydrocarbons that glow brightly in the infrared. The blue color in the center of the galaxy shows a region of young stars burning hot and bright.

Read more