Skip to main content

What comes after Webb? NASA’s next-generation planet-hunting telescope

Promotional image for Tech For Change. Person standing on solar panel looking at sunset.
This story is part of Tech for Change: an ongoing series in which we shine a spotlight on positive uses of technology, and showcase how they're helping to make the world a better place.

An illustration shows how NASA's Habitable Worlds Observatory would measure the atmosphere of distant planets.
NASA

When it comes to building enormous, complex space telescopes, agencies like NASA have to plan far in advance. Even though the James Webb Space Telescope only launched recently, astronomers are already busy thinking about what will come after Webb — and they’ve got ambitious plans.

Recommended Videos

The big plan for the next decades of astronomy research is to find habitable planets, and maybe even to search for signs of life beyond Earth. That’s the lofty goal of the Habitable Worlds Observatory, a space telescope currently in the planning phase that is aimed at discovering 25 Earth-like planets around sun-like stars.

We spoke to two of the scientists working on plans for this next-generation space telescope to find out more.

The power of direct imaging

One of the big challenges in finding habitable planets beyond our solar system is this: We can rarely actually see these far-off planets directly, because planets are so small and dim compared to stars. So to identify an exoplanet, astronomers generally infer its existence due to its effects on its host star. Currently, tools like the Hubble or James Webb space telescopes most often look for dips in a star’s brightness when a planet passes in front of it, called a transit, or they look for a wobble of the star caused by the gravity of the planet, called the radial velocity method.

This is a multigenerational, probably multi-century endeavor that we’re on.”

Those methods give us clues, but to really understand exoplanets in depth, we need to be able to image them directly. Current telescopes are rarely able to do this because it requires such a high level of precision, but scientists are already planning out a next generation of space telescopes that will be able to take images of exoplanets.

NASA's Nancy Grace Roman space telescope will launch in 2027.
Image used with permission by copyright holder

The next big space telescope to be launched is the Nancy Grace Roman Space Telescope, scheduled to launch in 2027. It will perform a survey of the sky to estimate how many habitable exoplanets are out there. After that comes the Habitable World Observatory, a planned space telescope that will directly image Earth-like exoplanets around sun-like stars and which should launch around 2040. This will be the best chance we’ll have to date of discovering habitable Earth-like worlds where we could search for evidence of life beyond Earth.

Choosing the right wavelength

If you’ve followed the news about the James Webb Space Telescope, you’ve likely heard that it looks in the infrared part of the electromagnetic spectrum. That’s essential for its goal of studying the earliest galaxies, as it allows scientists to see galaxies with high levels of redshift. Infrared is also useful for looking through clouds of dust and seeing structures that would otherwise be hidden.

The plan for the Habitable Worlds Observatory, however, is to look in the optical and ultraviolet wavelengths. These wavelengths are useful for identifying the signatures of specific atoms such as hydrogen or oxygen, so we can point our instruments toward a planet and learn what its atmosphere is composed of. 

There are all sorts of options for what particular atoms or compounds we could look for, but oxygen is the leading choice right now for what is called a biomarker, or a clue that indicates the potential presence of life. Spotting oxygen on a distant planet may be a sign that it warrants further inspection.

“There’s no perfect biomarker signature,” said David Sing of Johns Hopkins University, as we could also look for atoms like methane, and there’s always the possibility of a false positive, “but oxygen is a really important one.” 

Oxygen also gives off a very strong signal, which makes it relatively easier to detect. In particular, ozone — which is a variation of oxygen with three atoms bound together — has a very strong signature in the ultraviolet wavelength. Think about how the ozone layer on Earth protects us from the ultraviolet radiation from the sun, and you can see how scientists could infer the presence of ozone on a distant planet if they saw a particular wavelength of ultraviolet light being blocked.

How to build an optical/UV telescope

With its focus on optical and ultraviolet wavelengths, the Habitable Worlds Observatory will be more similar to the Hubble Space Telescope than the James Webb Space Telescope. And that brings some advantages in terms of how you build a telescope.

Infrared telescopes like Webb are very sensitive to temperature (because when things get hot, they give off infrared radiation). So to work accurately, Webb needs to be cooled to extremely low operating temperatures of just a few Kelvin for some instruments. That makes the telescope more complex and expensive to build, as it requires a cryogenic cooling system.

For a telescope like the Habitable Worlds Observatory, that kind of extreme cooling isn’t necessary, which helps to keep the costs down.

The James Webb Space Telescope used gold-coated mirrors for reflecting infrared radiation.
NASA

Another key difference between infrared telescopes like Webb and optical/ultraviolet telescopes like the Habitable Worlds Observatory is the mirror. Webb’s primary mirror is coated with gold, which reflects infrared light very well. But an optical/ultraviolet telescope has a mirror coated with silver, which is more efficient at reflecting those wavelengths.

New technologies for a new decade

In some ways, we already know exactly what sorts of instruments will be required to look for habitable worlds, as these are updates to existing instruments rather than entirely new concepts.

For example, the instruments on Habitable Worlds will be somewhat similar to those on James Webb or Hubble, as they will consist of cameras and spectrographs. The cameras will be used to look for exoplanets in other star systems, and once a planet has been identified, it can be studied in more depth using the spectrographs. Spectrographs work by splitting incoming light into different wavelengths, to see which wavelengths have been absorbed. That tells you what the object that you’re looking at is composed of — and that’s how you can see whether an exoplanet has an atmosphere, and what that atmosphere is made of.

A NASA illustration shows how light from a star is reflected into a detector.
NASA

Refining these instruments and making them more accurate is not a trivial endeavor. In addition to direct detection, the next generation of space telescopes will also use techniques like radial velocity for identifying exoplanets. And more accurate spectrographs will enable techniques like extreme precision radial velocity, which allows more accurate measurements of the masses of exoplanets orbiting sun-like stars. 

But more theoretical advances are required as well. One major factor required to improve our understanding of exoplanets, for example, is improving our understanding of stars. Stars can become brighter or dimmer for all sorts of reasons, and we need to be able to model this more accurately if we want to determine whether a variation is caused by the presence of an exoplanet, or is due to variation of the star.

Hunting for habitability

Even with a brand-new telescope equipped with brand-new technology, however, it won’t be a simple matter to find life beyond our solar system. That’s because habitability is a complex concept that requires more than just identifying an Earth-like planet orbiting a sun-like star.

“A planet that looks like it’s about the right brightness to be an Earth-sized planet, that has a roughly circular orbit in what we would call the habitable zone, shows some evidence for water vapor, maybe some oxygen, there’s no inner giant planet that has stirred things up, the star isn’t too active — that’s the kind of system we’re hoping to find as a candidate for a potentially habitable planet,” Scott Gaudi of the Ohio State University said.

An artist's depiction shows TOI 700 e, an Earth-like world.
NASA

But as tempting as it is to imagine a scenario where we build this telescope, find a habitable planet, then immediately detect life, that’s not how this will work, Gaudi said.

To properly search for habitable exoplanets, “we really have to get the whole context, which means studying the other planets in the systems, the debris disks, studying the stars,” Gaudi said. “That’s what’s really going to help us understand whether or not these planets are truly habitable.”

There’s a temptation to imagine that “we’re going to build the Habitable Worlds Observatory, we’re going to find life, and we’re done,” Gaudi said, but “it’s not going to work that way. If we’re lucky, we’re going to find one or two, maybe three, systems that look pretty promising. And then we’re going to have to build something even bigger and better.” 

A multigenerational endeavor

Even if we’re able to find the ideal-looking system with a potentially habitable Earth-like world, then the next step would be to look at even more advanced factors, such as how much of the planet is covered by oceans and how much is land mass. Searching for life isn’t something that is going to be solved any time soon, but scientists are now laying the groundwork for Habitable Worlds Observatory to take on the next part of the job in 20 years’ time.

That’s similar to the way that planning for the James Webb Space Telescope began around 2000, and scientists today are just starting to be able to use this tool for discovery.

“Several decades ago, I was just a young student. But I’ve reaped the rewards of all that hard work that people did at the time,” Sing said. “And that generation of scientists felt that way because people did it for them with the Hubble Space Telescope. So there’s this legacy where you’re reaping the rewards of what senior scientists did 20 years ago. And you want to make sure that legacy will continue 20 years from now.”

The Hubble Space Telescope launches in 1990.
NASA

Because wondering whether life could exist beyond Earth is one of the most profound questions facing science today, and it won’t be solved quickly. The Habitable Worlds Observatory is the next step on that journey, but it won’t be the end point.

“This is a multigenerational, probably multi-century endeavor that we’re on,” Gaudi said. “And I think that we should be optimistic about that process, but we should also be humble.”

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
These new NASA EVs will drive astronauts part way to the moon (sort of)
NASA's new crew transportation electric vehicles.

Three specially designed, fully electric, environmentally friendly crew transportation vehicles for Artemis missions arrived at NASA’s Kennedy Space Center in Florida this week. The zero-emission vehicles, which will carry astronauts to Launch Complex 39B for Artemis missions, were delivered by Canoo Technologies of Torrance, California. NASA/Isaac Watson

NASA has shown off a trio of new all-electric vehicles that will shuttle the next generation of lunar astronauts to the launchpad at the Kennedy Space Center.

Read more
James Webb telescope searches for habitability in the famous TRAPPIST-1 system
This artist' concept shows what the hot rocky exoplanet TRAPPIST-1 c could look like based on this work. TRAPPIST-1 c, the second of seven known planets in the TRAPPIST-1 system, orbits its star at a distance of 0.016 AU (about 1.5 million miles), completing one circuit in just 2.42 Earth-days. TRAPPIST-1 c is slightly larger than Earth, but has around the same density, which indicates that it must have a rocky composition. Webb’s measurement of 15-micron mid-infrared light emitted by TRAPPIST-1 c suggests that the planet has either a bare rocky surface or a very thin carbon dioxide atmosphere.

Of all the planets we've discovered beyond our solar system, the majority are not Earth-like at all. They are most often gas giants like Jupiter that orbit very close to their stars, making them extremely hot. These are also generally the easiest type of exoplanet to detect. Very few of the thousands of discovered exoplanets could be potentially habitable -- fewer than 50 in total. That's why astronomers were so excited by the finding in 2017 of a system called TRAPPIST-1, which has seven rocky Earth-sized exoplanets, four of which are in the habitable zone.

But TRAPPIST-1 is a long way away, at 40 light-years' distance, so it isn't easy to see these planets in detail. Astronomers had some information about the planets' sizes and orbits, but to really know if life could ever have emerged there, they needed information on the planets' atmospheres. And the James Webb Space Telescope provided the means to investigate that.

Read more
How NASA’s astronaut class of 1978 changed the face of space exploration
Sally Ride NASA

When you look back on the long history of crewed spaceflight, one group stands out for its radical challenge to the conventional wisdom of who could become an astronaut. NASA's astronaut class of 1978 saw not only its first women and people of color working as astronauts such as Sally Ride and Guy Bluford, but also the first Asian American astronaut, El Onizuka, the first Jewish American astronaut, Judy Resnik, and the first LGBT astronaut, once again Sally Ride.

A new book, The New Guys: The Historic Class of Astronauts That Broke Barriers and Changed the Face of Space Travel, chronicles the story of this class and its impact on both NASA and the wider world’s perceptions of who could be an astronaut. We spoke to the author, Meredith Bagby, about this remarkable group of people and how they changed the face of human spaceflight.
Breaking the mold
Throughout the 50s and 60s, NASA almost exclusively chose fighter pilots for its early human spaceflight program, Project Mercury. That meant that not only were astronaut groups like the famous Mercury Seven entirely composed of white men, but they also came from very similar military backgrounds.

Read more