Skip to main content

Implantable payment chips: The future, or cyberpunk pipe dream?

There are approximately 17 billion bank cards in current circulation, helping shuttle unthinkable quantities of capital around the world on a daily basis, with little more effort required from customers than a simple swipe or the tap of a payment terminal.

For a much smaller number of users, however, the idea of tapping a bank card or phone to pay for a product sounds hopelessly outdated and arduous.

Recommended Videos

For these people – currently numbering some 600 and counting – payments are as quick and easy as waving their hand, Jedi mind-trick style. And all it takes is a willingness to have a subdermal payment implant, around 28mm in length, implanted into their bodies.

How to get Walletmor payment implant? 5 step instruction

Welcome to the (possible) future of payments – created by a Polish startup called Walletmor.

“We’ve designed and created the world’s first payment implants that are globally accepted,” Wojtek Paprota, founder and chief executive of Walletmor, told Digital Trends. “It’s an open payment implant that can be used to purchase a drink in New York, a haircut in Paris, or a Pad Thai in Bangkok. It’s an amazing device.”

Payments, cyborg-style

A person using Walletmor chip arm implant to make a payment.
Walletmor

Paprota, a startup entrepreneur with a background in wealth management and finance, came up with the concept for Walletmor a couple of years ago. Reading a Polish science fiction novel, Internet ludzi: Organizacja jutra (Internet of People: Organization of Tomorrow), he was struck by an innocuous scene in which a character opened a door using an embedded smart chip.

“I thought, ‘Oh my gosh, that’s amazing,’” he said. “There are already things like that on the market, but I’d never seen it done with payments.”

As Paprota notes, the idea of having a device, not much larger than a grain of rice, implanted into the body is not totally without precedent. In 1998, Kevin Warwick, a professor in the Department of Cybernetics at the U.K.’s University of Reading, made headlines when he elected to have a silicon chip, encased in a glass tube, implanted under the skin in his left arm.

The implant connected to a central computer, which allowed Warwick to open doors and switch on lights simply by walking through his lab. At the time, Warwick reported that he quickly began to feel “like the implant was one with my body.”

Walletmor’s chip is different, Paprota explained, because it focuses not on a “closed loop,” but rather connects to an open standard: In this case, a payments platform. The fact that his company is selling the chips is also, while not wholly unique, a bit different to lab-based proof-of-concept demos.

Building a prototype

The Walletmor chip arm implant that is used to make payments.
Walletmor

Not that there wasn’t a fair degree of experimentation in the path to reach this point. Once Paprota had his initial idea, he turned to Amal Graafstra, a person who had carried out some work in this field, to help him realize the dream. Walletmor’s website describes Graafstra, now the company’s Chief Technology Officer, as the “most respectable person in the smart implants space.” But Paprota nonetheless had his concerns.

“[Amal] said, ‘I cannot guarantee that it’s going to succeed because I’ve never done something like this before,’” Paprota recalled. “I kept asking all these questions: ‘What’s the risk of getting an infection?’ ‘What’s the chance of success?’ ‘What’s the risk of failure?’ What about a zillion other [questions]?’ Every answer that I got was, ‘I don’t know, because I have never done this before.’”

Eventually, the prototype was ready and the company began marketing its Walletmor implant to customers. (Currently, it’s available only in Europe, although it’s hoped this will eventually expand to the U.S. as well.)

In order to use the device, customers must first order the 199 euro (approximately $213) implant through the company’s website. They next need to open a corresponding iCard or, in the U.K., MuchBetter.com account in order to create a digital wallet linkable with the implant. After that, they link the implant to the account with an easy activation code, add money to the account to begin spending, and – finally – pay a visit to their friendly neighborhood “medical aesthetics clinic” to get the chip installed beneath their skin.

The device works using near-field communication (NFC) technology, the same contactless payment system that’s used in smartphones for the likes of Apple Pay.

“Walletmor is only responsible for the hardware for the implants themselves; we build implants, and we deliver them to the customers,” Paprota said. “When it comes to the software and cybersecurity [side of the coin], it’s up to the companies we work with and the systems we use.”

The future of payments?

Woman using the Walletmor app.
Walletmor

So is this the next step of payments as we know it? Paprota certainly seems confident about his vision of a cyborgic future for consumer payments. For now, though, he admits there are some bottlenecks. One is the fact that the device is still “relatively expensive” compared to freely available bank cards, which come with the additional benefit of not needing to be physically inserted into the body.

The implants also don’t do a whole lot that other payment options aren’t capable of delivering. There’s no major pain point that it solves – with the possible exception that you’re unlikely to accidentally leave your subdermal chip at home, and it’s probably less likely to be snatched by thieves on a night out.

Medium-term, Paprota makes an interesting point about why banks might be genuinely interested in adopting this, though. “When you have an implant installed in your hand, it becomes your default first choice payment method,” he explained. “That’s a great advantage for banks because when you have, say, 10 [payment] cards in your wallet, the banks are competing for your choice. The one that gets chosen wins – and let’s not forget that banks make money on the transactions when we use their cards.”

Realistically, however, it’s going to take more than saving spenders seconds on a payment for the majority of people to willingly undergo elective surgery – no matter how minor – in order to become one with their bank. That’s where the future bit comes in.

“We are planning to introduce multiple applications to our implant to create an ecosystem,” said Paprota. “Then it’s not only a payment implant, but a way of managing our digital and physical identity. Apart from paying, you could use this … at the airport for your passport or to provide medical certification, such as a COVID pass. If you have an accident, this could be installed in your body to make sure that the first responder gets the most crucial data to provide you with the appropriate first aid. The more applications and features you get within one implant, the more attractive it will get to customers. Think of it as an aggregator of our identity.”

Global acceptance

Whether that happens remains to be seen. Paprota may talk about the world’s first payment implants as “globally accepted,” but your mileage for “accepted” might vary. Paprota is under no illusions, though. He knows, in the words of organizational theorist Geoffrey Moore, that this kind of tech has a whole lot of chasm-crossing to do before it’s universally accepted. He just happens to have faith in the general public’s proverbial chasm-leaping abilities.

“I believe that the most important challenge that we are facing at the moment is the social acceptance of this device,” he said. “The social acceptance and the wave of skepticism come from older generations that are not that keen on any sort of changes. But if you look at the [history of] personal computers and the internet, it was also developed and heavily supported by the younger generations. It took not one year or two years, but at least 10 years to fully commercialize it – [and you still] see some older people not having the personal computers, and not using it. I believe it’s going to be the same for implants. But I’m fully committed to that, and I’m ready to work for the next 30 years on this project.”

Coming soon(ish) to an arm near you.

Luke Dormehl
Former Digital Trends Contributor
I'm a UK-based tech writer covering Cool Tech at Digital Trends. I've also written for Fast Company, Wired, the Guardian…
Amazon’s AI shopper makes sure you don’t leave without spending
Amazon Buy for Me feature.

The future of online shopping on Amazon is going to be heavily dependent on AI. Early in 2025, the company pushed its Rufus AI agent to spill product information and help users find the right items. A few weeks later, another AI tool called Interests made its way to the shopping site. 

The new Alexa+ AI assistant is also capable of placing orders semi-autonomously, handling everything from groceries to booking appointments. Now, the company has started to test yet another AI agent that will buy products from other websites if they’re not available on Amazon — without ever leaving the app. 

Read more
Google Gemini’s best AI tricks finally land on Microsoft Copilot
Copilot app for Mac

Microsoft’s Copilot had a rather splashy AI upgrade fest at the company’s recent event. Microsoft made a total of nine product announcements, which include the agentic trick called Actions, Memory, Vision, Pages, Shopping, and Copilot Search. 

A healthy few have already appeared on rival AI products such as Google’s Gemini and OpenAI’s ChatGPT, alongside much smaller players like Perplexity and browser-maker Opera. However, two products that have found some vocal fan-following with Gemini and ChatGPT have finally landed on the Copilot platform. 

Read more
Rivian set to unlock unmapped roads for Gen2 vehicles
rivian unmapped roads gen2 r1t gallery image 0

Rivian fans rejoice! Just a few weeks ago, Rivian rolled out automated, hands-off driving for its second-gen R1 vehicles with a game-changing software update. Yet, the new feature, which is only operational on mapped highways, had left many fans craving for more.
Now the company, which prides itself on listening to - and delivering on - what its customers want, didn’t wait long to signal a ‘map-free’ upgrade will be available later this year.
“One feedback we’ve heard loud and clear is that customers love [Highway Assist] but they want to use it in more places,” James Philbin, Rivian VP of autonomy, said on the podcast RivianTrackr Hangouts. “So that’s something kind of exciting we’re working on, we’re calling it internally ‘Map Free’, that we’re targeting for later this year.”
The lag between the release of Highway Assist (HWA) and Map Free automated driving gives time for the fleet of Rivian vehicles to gather ‘unique events’. These events are used to train Rivian’s offline model in the cloud before data is distilled back to individual vehicles.
As Rivian founder and CEO RJ Scaringe explained in early March, HWA marked the very beginning of an expanding automated-driving feature set, “going from highways to surface roads, to turn-by-turn.”
For now, HWA still requires drivers to keep their eyes on the road. The system will send alerts if you drift too long without paying attention. But stay tuned—eyes-off driving is set for 2026.
It’s also part of what Rivian calls its “Giving you your time back” philosophy, the first of three pillars supporting Rivian’s vision over the next three to five years. Philbin says that philosophy is focused on “meeting drivers where they are”, as opposed to chasing full automation in the way other automakers, such as Tesla’s robotaxi, might be doing.
“We recognize a lot of people buy Rivians to go on these adventures, to have these amazing trips. They want to drive, and we want to let them drive,” Philbin says. “But there’s a lot of other driving that’s very monotonous, very boring, like on the highway. There, giving you your time back is how we can give the best experience.”
This will also eventually lead to the third pillar of Rivian’s vision, which is delivering Level 4, or high-automation vehicles: Those will offer features such as auto park or auto valet, where you can get out of your Rivian at the office, or at the airport, and it goes off and parks itself.
While not promising anything, Philbin says he believes the current Gen 2 hardware and platforms should be able to support these upcoming features.
The second pillar for Rivian is its focus on active safety features, as the EV-maker rewrote its entire autonomous vehicle (AV) system for its Gen2 models. This focus allowed Rivian’s R1T to be the only large truck in North America to get a Top Safety Pick+ from the Insurance Institute for Highway Safety.
“I believe there’s a lot of innovation in the active safety space, in terms of making those features more capable and preventing more accidents,” Philbin says. “Really the goal, the north star goal, would be to have Rivian be one of the safest vehicles on the road, not only for the occupants but also for other road users.”

Read more